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Abstract. We present a general formulation for the spectral decomposition of the Hamiltonian
operator of a quantum fractal network (QFN). The QFN can be constructed by placing artificial
neurons on each site of the fractal lattice. An artificial neuron may consist of a cell of a quantum
cellular automata or a quantum dot which confines a single electron. The Coulomb interaction
or the spin–spin interaction between neurons can be used to transmit signals and perform logic
operations. The local external field may be as input signal to influence output of the system. We
obtain explicitly the recursive formulae of the eigenvalues and eigenvectors between sublattices, the
intertwining relation between the collision operator and the Hamiltonian operator by combining
subdynamics and a reduced lattice approach. Furthermore, the perturbation method to obtain
the spectral decomposition for the time-dependent Hamiltonian is also discussed. Finally, as an
example, we calculate the eigenvalues and eigenvectors of the Hamiltonian operator for a Sierpinski
gasket based on our formulation. Analysis of the recursive formula for the spectrum of the Sierpinski
gasket, reveals how its spectral structure changes in boundary conditions.

1. Introduction

The self-organized response of neurons to external stimuli can result in fractal-like patterns.
For example, the human brain may assume a fractal-like structure in which neural structures at
many different spatial scales are recursively embedded by self-similarity [1]. Fractal structures
may, in principle, be fabricated on semiconductor surfaces at the nanometre scale. An artificial
neuron may be placed on each lattice point of this fractal net, with each neuron having a cellular
structure [2] or being a quantum dot confining a single electron with an arbitrary spin state
[3]. The Coulomb interaction or the spin–spin interaction can act as the switching mechanism
between neurons. This interaction can be used to transmit signals and perform logic operations.
Furthermore, a single neuron with a given spin may be used to construct a quantum logic gate
which can convert input qubits into output qubits [4]. An interesting feature of this sort of
artificial fractal circuit is that it can produce a complicated electronic spectral structure, quite
different from that of a regular neural network [5]. Based on this structure, the physical
properties of quantum fractal circuits can be explored and their applications can be examined.

In this paper, we present a formulation for dealing with the spectral decomposition
of the time-independent or time-dependent Hamiltonian operator of a fractal lattice by
combining subdynamics with a reduced sublattice approach. In section 2, we introduce the
collision operator by dividing the system into two sublattices based on the self-similarity
of the system. In section 3, we deduce the recursive formulae based on the self-similarity
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between the two sublattices of the system. In section 4, we investigate the intertwining
relationship between the original Hamiltonian operator and the intermediate operator based on
the subdynamics approach. In section 5, the perturbation method to solve eigenvalue problems
of the Hamiltonian influenced by a time-dependent local external field is also discussed. In
section 6, we demonstrate one application of this approach to construct the eigenvalues and
the eigenvectors of the Hamiltonian operator of the Sierpinski gasket [6]. Finally, we provide
some conclusions of this investigation.

2. Collision operator of the model

Let us consider a fractal lattice in which an artificial neuron hosting electrons with arbitrary
polarization or spin states is placed on each site [2, 7–9]. The Hamiltonian operatorH of this
confinement quantum fractal system can be written as a bulk partHb plus a perturbation part
1H introduced by confinement of artificial neurons:

H = Hb +1H. (1)

Then, we choose the eigenvectors of neurons of the confinement system as the initial basis to
expand the HamiltonianH by

H =
∑
j

αjj |j〉〈j | −
∑
j,k

βjk|j〉〈k| + βkj |k〉〈j | (2a)

where |j〉, 〈k| represent eigenvectors of neighbouring neurons with the set of all these
wavefunctions comprising a complete orthonormal basis in a Hilbert space; the coefficient
αjj = 〈j |H |j〉 is the on-site potential at sitesj ; βjk = 〈j |H |k〉(βkj = 〈k|H |j〉) is the jump
potential between thej th (kth) neuron andkth (j th) neuron.

For simplicity, we assume that the shape, size and structure, etc of each neuron for this
system is the same so that the confinement is the same for each neuron; the inter-neuron
spacing is sufficiently close so that only nearest-neighbour electrons have an appreciable
overlap between their wavefunctions, which means that the Coulomb interaction or the spin–
spin interaction only influences nearest neighbours. Under these assumptions, the Hamiltonian
(2a) becomes:

H = α
∑
j

|j〉〈j | − β
∑
〈jk〉
(|j〉〈k| + |k〉〈j |). (2b)

From Schr̈odinger’s equation

i
∂

∂t
ϕ(t) = Hϕ(t) (3)

the formal solution is given by

ϕ(t) = e−itH ϕ(0) = 1

2π i

∮
0

dz e−iztR(z)ϕ(0) (4)

where the contour integral0 runs anticlockwise around a sufficiently large portion of the real
axis of the complex plane;R(z) is the resolvent operator defined by

R(z) ≡ 1

z−H . (5)

Let us divide this system into two parts by introducing two kinds of sublattices based on
the self-similarity of the system. That is, sublattice 1 may be deduced from sublattice 2 by
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a spatial scaling, and both constitute a certain-order lattice. Then, two projection operators
corresponding to the two sublattices are defined by

P ≡
N(1)∑
j=1

|j (1)〉〈j (1)| Q ≡
N(2)∑
k=1

|k(2)〉〈k(2)| (6)

for j (1) 6= k(2) and satisfy completeness in Hilbert space:

P +Q = I (7)

so, the orthonormal property is automatic:

PQ = P(I − P) = 0 (8)

whereN(1) andN(2) denote the numbers of sites of two sublattices, respectively.
The Hamiltonian operatorH and resolvent operatorR(z) can then be written:

H =
(
PHP PHQ

QHP QHQ

)
(9)

R(z) =
(
PRP PRQ

QRP QRQ

)
. (10)

In terms of equation (5) we have

zPRP − PHPRP − PHQRP = P (11a)

zQRP −QHPRP −QHQRP = 0 (11b)

zPRQ− PRPHQ− PRQHQ = 0 (11c)

zQRQ−QRPHQ−QRQHQ = Q. (11d)

Using equation (11b), we get

QRP = 1

z−QHQQHPRP. (12)

Substituting equation (12) into equation (11a),

PRP = 1

z− PHP − ψ(z)P (13)

where

ψ(z) ≡ PHQ 1

z−QHQQHP. (14)

Therefore equation (12) becomes

QRP = C(z) 1

z− PHP − ψ(z)P (15)

where

C(z) ≡ 1

z−QHQQHP. (16)

In the same way, from equations (11c) and (11d) we have

PRQ = P 1

z− PHP − ψ(z)D(z) (17)

QRQ = C(z) 1

z− PHP − ψ(z)D(z) +Q
1

z−QHQ (18)
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where

D(z) ≡ PHQ 1

z−QHQ. (19)

Thus,

PRQ +QRQ = RQ
= (P +C(z))

1

z− PHP − ψ(z)D(z) +Q
1

z−QHQ (20)

and

PRP +QRP = (P +C(z))
1

z− PHP − ψ(z)P = RP. (21)

Finally, we obtain an identity relation [10, 11]

R(z) = R(z)Q +R(z)P

= (P +C(z))
1

z−9(z)(P +D(z)) +Q
1

z−QHQ (22)

where we define the collision operator9(z) by

9(z) ≡ PHP +ψ(z) = PHP + PHC(z)P

= PHP + PHQ
1

z−QHQQHP. (23)

The matrix representation of the collision operator is given by

9M = H(11) +H(12) 1

ZI −H(22)
H (21) (24)

whereH(11) is a matrix given with respect to the vectors of the sites of sublattice 1, reflecting
the interactions between the sites of sublattice 1;H(22) is a matrix with respect to the vectors
of the sites of sublattice 2, reflecting the interaction between the sites of sublattice 2;H(12),
H(21) are matrices with respect to the vectors of the sites of sublattices 1 and 2, reflecting the
interactions between the different sublattices 1 and 2.

3. Recursive relation for sublattices

The important characteristic of the fractal lattices is self-similarity between sublattices. Based
on this fact, we can obtain the recursive relations of the energy spectrum and eigenstates
between different-order sublattices, which permit finding the spectral decomposition of the
original Hamiltonian operator. The recursive relation is induced as follows.

First, by means of the property of self-similarity between sublattices 1 and 2, we obtain
the recursive relations of the eigenvalues between the two sublattices. In fact, from definition
(23), we have

9(z) =
N(1)∑
j (1)=1

(
〈j (1)|H |j (1)〉 + 〈j (1)|HQ 1

z−QHQQH |j
(1)〉
)
|j (1)〉〈j (1)|

+
N(1)∑

j (1) 6=k(1)

(
〈j (1)|H |k(1)〉 + 〈j (1)|HQ 1

z−QHQQH |k
(1)〉
)
|j (1)〉〈k(1)|. (25)
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Since

〈j (1)|HQ 1

z−QHQQH |j
(1)〉

=
N(2)∑

k(2),j (2) 6=j (1)
〈j (1)|H |k(2)〉〈k(2)| 1

z−QHQ |j
(2)〉〈j (2)|H |j (1)〉

= (N ′(2) − 1)N ′(2)〈k(2)| β2

z−QHQ |j
(2)〉 (26)

and

〈j (1)|HQ 1

z−QHQQH |k
(1)〉

=
N(2)∑

k(2) 6=j (1)

N(2)∑
j (2) 6=k(1)

〈j (1)|H |k(2)〉〈k(2)| 1

z−QHQ |j
(2)〉〈j (2)|H |k(1)〉

= (N ′(2) − 1)2〈k(2)| β2

z−QHQ |j
(2)〉 (27)

whereN ′(2) is the number of sites on sublattice 2 (which are nearest neighbours of the sites of
sublattice 1). Thus,

9(z) = α′
N(1)∑
j (1)=1

|j (1)〉〈j (1)| + β ′
N(1)∑

j (1) 6=k(1)
|j (1)〉〈k(1)| (28a)

giving,

α′ = α + (N ′(2) − 1)N ′(2)〈k(2)| β2

z−QHQ |j
(2)〉 (28b)

and

β ′ = β + (N ′(2) − 1)2〈k(2)| β2

z−QHQ |j
(2)〉. (28c)

Therefore, any diagonal element of the matrix9M representsα′, while any off-diagonal element
of 9M representsβ ′.

Supposing that the eigenvector ofH is given by

|f 〉 =
N(1)+N(2)∑
j=1

〈j |f 〉|j〉 =
N(1)+N(2)∑
j=1

fj |j〉 (29)

then we have

〈j |H |f 〉 = Zj 〈j |f 〉 = α〈j |f 〉 + β
∑
k

〈k|f 〉 (30)

(Zj − α)fj = β
∑
k

fk. (31)

If 9(z) andH have the same spectral structure, from equation (28a), we also have

〈j |9(z)|ϕ(1)〉 = Zj 〈j |ϕ(1)〉 = α′〈j |ϕ(1)〉 + β ′
∑
k

〈k|ϕ(1)〉 (32)

(Zj − α′)ϕ(1)j = β ′
∑
k

ϕ
(1)
k . (33)
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In terms of the self-similarity of the sublattice, comparing equations (31) and (33),

Zj − α′ + a
β ′

= Z′j − α + a

β ′
(34)

hence, the recursive formula between the eigenvalues of sublattice 1 and sublattice 2 is given
by

ε′ =
(
β

β ′
ε − α

′ + α
β ′

)
(35)

where we have defined

ε′ ≡ Z′j
β ′

ε ≡ Zj

β
. (36)

Secondly, from equation (9), we have

HF = ZF
=
(
PHP PHQ

QHP QHQ

)(
u(1)

u(2)

)
= ZI

(
u(1)

u(2)

)
. (37)

Therefore,

PHPu(1) + PHQu(2) = Zu(1) (38a)

QHPu(1) +QHQu(2) = Zu(2). (38b)

Using equation (38b), we obtain the recursive relation between the eigenvectors of sublattice 1
and sublattice 2:

u(2) = 1

Z −QHQQHPu
(1) (39)

with the matrix representation given by

u(2) = 1

ZI −H22
H21u

(1). (40)

4. Intertwining relation

The eigenvalue problem of the collision operator9(z) is closely related to the eigenvalue
problem of the original Hamiltonian operatorH . To prove this, suppose that

9(Z(ν)n )|u(ν)n 〉 = Z(ν)n |u(ν)n 〉 (41)

〈ṽ(ν)n |9(Z(ν)n ) = 〈ṽ(ν)n |Z(ν)n (42)

P (ν) =
N(ν)∑
n=1

|u(ν)n 〉〈ṽ(ν)n | Q(ν) = I − P (ν) (43)

〈u(ν)n |ṽ(ν)m 〉 = δn,m (44)

whereν = 1, 2 corresponds to sublattice 1 and sublattice 2, respectively.ṽ(ν)n represents the
left eigenvector of9(ν) which may be in the functional space beyond Hilbert space [11, 12].
Then, from equation (22), we have

R(z) =
2∑
ν=1

N(ν)∑
n=1

[
(P (ν) +C(ν)(z))

1

z− Z(ν)n
|u(ν)n 〉〈ṽ(ν)n |(P (ν) +D(ν)(z))

+ Q(ν) 1

z−Q(ν)HQ(ν)

]
. (45)
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From equation (3), the spectral decomposition of the evolution operator is calculated by

e−itH = 1

2π i

∮
0

dz e−iztR(z)

=
2∑
ν=1

N(ν)∑
n=1

[
1

2π i

∮
0

dz e−izt (P (ν) +C(ν)(z))
1

z− Z(ν)n
|u(ν)n 〉〈ṽ(ν)n |(P (ν) +D(ν)(z))

+
1

2π i

∮
0

dz e−iztQ(ν) 1

z−Q(ν)HQ(ν)

]
(46)

where0 is a contour of Cauchy integral including the eigenvalues ofH as poles. Suppose that
the spectral decomposition of the Hamiltonian operatorH is given by

H =
2∑
ν=1

N(ν)∑
n=1

Z(ν)n |F (ν)n 〉〈F̃ (ν)n | (47)

then, since

z−Q(ν)HQ(ν) = z−
2∑

ν 6=1n

N(ν)∑
j,k=1

Z(ν)n 〈ṽ(ν)j |F (ν)n 〉〈F̃ (ν)n |u(ν)k 〉|u(ν)j 〉〈ṽ(ν)k | (48)

therefore the contour integral0 excludes the eigenvalues ofQ(ν)HQ(ν) as poles, so that

1

2π i

∮
0

dz e−iztQ(ν) 1

z−Q(ν)HQ(ν)
= 0. (49)

Then, we obtain

e−itH =
2∑
ν=1

N(ν)∑
n=1

1

2π i

∮
0

dze−izt (P (ν) +C(ν)(z))
1

z− Z(ν)n
|u(ν)n 〉〈ṽ(ν)n |(P (ν) +D(ν)(z))

=
2∑
ν=1

N(ν)∑
n=1

e−iZ(ν)n t η(P (ν) +C(ν)(Z(ν)n ))|u(ν)n 〉〈ṽ(ν)n |(P (ν) +D(ν)(Z(ν)n )) (50)

where the normalization factor is given by

η = (〈ṽ(ν)n |(P (ν) +D(ν)(Z(ν)n )C
(ν)(Z(ν)n ))|u(ν)n 〉)−1. (51)

By taking the derivative of equation (50), the spectral decomposition ofH is:

H =
2∑
ν=1

N(ν)∑
n=1

Z(ν)n η(P
(ν) +C(ν)(Z(ν)n ))|u(ν)n 〉〈ṽ(ν)n |(P (ν) +D(ν)(Z(ν)n ))

=
2∑
ν=1

N(ν)∑
n=1

Z(ν)n |F (ν)n 〉〈F̃ (ν)n | (52)

where the eigenvalues of the Hamiltonian operatorH are the same as the eigenvalues of the
collision operator9(ν)(z), while the eigenvectors of the Hamiltonian operators are given by

|F (ν)n 〉 =
√
η(P (ν) +C(ν)(Z(ν)n ))|u(ν)n 〉 (53a)

〈F̃ (ν)n | = 〈ṽ(ν)n |(P (ν) +D(ν)(Z(ν)n ))
√
η. (53b)

Furthermore, by defining the global collision operator2 [13] as

2(ν) =
N(ν)∑
n=1

9(Z(ν)n )|u(ν)n 〉〈ṽ(ν)n | =
N(ν)∑
n=1

Z(ν)n |u(ν)n 〉〈ṽ(ν)n | (54)
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and the global creation operatorC(ν) [13] as

C(ν) =
N(ν)∑
n=1

C(ν)(Z(ν)n )|u(ν)n 〉〈ṽ(ν)n | (55)

and considering the definition of the collision operator given in equation (23), we have

2(ν) =
N(ν)∑
n=1

(P (ν)HP (ν) + P (ν)HC(ν)(Z(ν)n )P
(ν))|u(ν)n 〉〈ṽ(ν)n |

= P (ν)HP (ν) + P (ν)HC(ν)P (ν) (56)

and

2(ν)|u(ν)n 〉 = Z(ν)n |u(ν)n 〉 (57a)

〈ṽ(ν)n |2(ν) = 〈ṽ(ν)n |Z(ν)n . (57b)

This means that|u(ν)n 〉 and〈ṽ(ν)n | are right and left eigenvectors of the global collision operator
2(ν), respectively. From the definition of the global collision operator (i.e. equation (54)) and
the spectral decomposition (i.e. equation (52)), we can obtain an intertwining relation between
the original Hamiltonian operator and the intermediate operator by

H = �2�−1 (58)

where the intermediate operator [10–12] is defined by

2 ≡
2∑
ν=1

2(ν) (59)

the similarity operator is defined by

� ≡
2∑
ν=1

(P (ν) +C(ν)) (60a)

and

�−1 ≡
2∑
ν=1

(P (ν) +D(ν)C(ν))−1(P (ν) +D(ν)). (60b)

5. The fractal neural network driven by an external field

When the fractal neural network is subject to a local time-dependent external fieldV (t) as an
input signal, the Hamiltonian (1) becomes:

H(t) = H + V (t). (61)

In this case, we can choose the eigenvectors(|ϕκ〉, 〈ϕκ |) ofH as the initial basis, and define the
one-dimensional projectors byPκ = |ϕκ〉〈ϕκ |, and its orthogonal projectors byQκ = I − Pκ ,
whereκ may imply the degeneracy parameter. Then the collision operator can be written as:

9κ(z) = PκH(t)Pκ + PκH(t)Qκ

1

z−QκH(t)Qκ

QκH(t)Pκ

= PκH(t)Pκ + PκH(t)RQ(z)H(t)Pκ (62)

whereRQκ
(z) are denoted as the resolvents in the subspaceHQκ

= {Qκf, ∀f ∈ H} of the
Hilbert spaceH by

RQκ
(z) ≡ Qκ

1

z−QκH(t)Qκ

Qκ. (63)
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From the Lippmann–Schwinger equation and its iterations we have the Borns series

R(z) = R0(z) +R0(z)V (t)R0(z) +R0(z)V (t)R0(z)V (t)R0(z) + · · · (64)

where the resolvents are defined by

R(z) ≡ 1

z−H(t) R0(z) ≡ 1

z−H . (65)

By adding the termλW to theH(t) and taking the limitλ→∞, we have

R̃(z) = R̃0(z) + R̃0(z)V (t)R̃0(z) (66)

and can prove that [17]

RQκ
(z) = R̃(z) = lim

λ→∞
(z−H(t)− λW)−1

= Qκ

1

z−QκH(t)Qκ

Qκ

= R(z)− R(z)Pκ(PκR(z)Pκ)−1PκR(z) (67)

R̃0(z) = Qκ

1

z−QκHQκ

Qκ

= lim
λ→∞

(z−H − λW)−1

= R0(z)− R0(z)Pκ(PκR0(z)Pκ)
−1PκR0(z). (68)

Therefore, we have

RQκ
(z) = R̃0(z) + R̃0(z)V (t)R̃0(z) + R̃0(z)V (t)R̃0(z)V (t)R̃0(z) + · · · . (69)

Substituting equation (69) into (62) gives

ψκ(z) = PκHPκ + PκV (t)(R̃0(z) + R̃0(z)V (t)R̃0(z)

+R̃0(z)V (t)R̃0(z)V (t)R̃0(z) + · · ·)V (t)Pκ . (70)

Hence we obtain the diagonal iterations from equation (70):

(Zκ)
[m](t) = (Zκ)[0](t)

+
m−1∑
l=0

〈ϕκ |V (t)R̃0((Zκ)
[m−1])[V (t)R̃0((Zκ)

[m−1])]lV (t)|ϕκ〉. (71)

Therefore the spectral decomposition for the total collision operator is

2(t) =
∑
κ

ψκ(Zκ(t))|ϕκ〉〈ϕκ | =
∑
κ

Zκ(t)|ϕκ〉〈ϕκ |. (72)

From equations (51)–(53b), we immediately obtain the spectral decomposition of the
Hamiltonian by

H(t) =
∑
κ

Zκ(t)|Fκ(t))〈F̃κ (t)| (73)

where the right eigenvectors are

|Fκ(t)〉 =
√
ηκ(t)(Pκ + R̃κ(Zκ(t))V (t))|ϕκ〉 (74a)

and the left eigenvectors are

〈F̃κ (t)| = 〈ϕκ |(Pκ + V (t)R̃κ(Zκ(t)))
√
ηκ(t) (74b)

and the normalization factor is√
ηκ(t) = (〈ϕκ |(Pκ + V (t)R̃2

κ(Zκ(t))V (t))|ϕκ〉)−1. (74c)
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In summary, the key to obtaining the spectral decomposition of the Hamiltonian operator
H(t)orH is to solve the eigenvalue problem for the collision operator or for the global collision
operator, and then to use the intertwining relation, through the similarity operator, to obtain
the spectral decomposition.

For the fractal lattice with a self-similar geometric structure, we first solve the eigenvalue
problem of the collision operator9(z) which is restricted to a finite subspace of the Hilbert
space spanned by eigenvectors of the sites of sublattice 1; then, by using the self-similarity
of the system, we can obtain the recursive relations for the eigenvalues and eigenvectors
between the two sublattices; finally, we use the intertwining relation between the collision
operator and the original Hamiltonian operator, to obtain the spectral decomposition for the
original Hamiltonian operator. In the following section, we provide an example to illustrate
our approach.

6. The spectral structure of the artificial Sierpinski gasket

We consider the placing of quantum dots [3, 14–16], each confining a single electron, on the
sites of the Sierpinski gasket. The inter-electron spaces are sufficiently close on this fractal
lattice, that only the nearest-neighbour electrons have an appreciable overlap between their
wavefunctions, the spin–spin interaction only influencing nearest neighbours. The Hamiltonian
operator of this system is assumed to be given by

H = −β
∑
j,k

(|j〉〈k| + |k〉〈j |) (75)

where|j〉, 〈k| represent the eigenstates of the nearest-neighbour neuronsj, k, respectively.
We divide the system into two sublattices, sublattice 1 including a large triangular form,

while sublattice 2 includes a small triangular form. We start from the first-order lattice and
denotej (ν), k(ν) = 1(ν), 2(ν), 3(ν), ν = 1, 2 to represent sublattice 1 and sublattice 2 of the
first-order lattice, respectively (see figure 1). Then the matrix of9

(1)
M with respect to the vectors

{j (1), k(1)} is given by:

H 12(ZI −H 22)−1H 21 =
 2εβ

(ε+2)(ε−1)
(2−ε)β

(ε+2)(ε−1)
(2−ε)β

(ε+2)(ε−1)
(2−ε)β

(ε+2)(ε−1)
2εβ

(ε+2)(ε−1)
(2−ε)β

(ε+2)(ε−1)
(2−ε)β

(ε+2)(ε−1)
(2−ε)β

(ε+2)(ε−1)
2εβ

(ε+2)(ε−1)

 (76)

where

ε ≡ Z

β
. (77)

The eigenvalues and eigenvectors for this matrix are:

ε
(1)
1 ↔

( 1
1
1

)
(78a)

and

ε
(1)
2 ↔

(−1
1
0

) (−1
0
1

)
(78b)

where

ε
(1)
1 =

1

3
3

√
(44 + 3

√
177) +

7

3 3

√
(44 + 3

√
177)

− 1

3
(79a)
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Figure 1. First-order Sierpinski gasket lattice.

ε
(1)
2 = −

1

12
3

√
(−404 + 12i

√
687)− 16

3 3

√
(−404 + 12i

√
687)

− 1

3

+
1

2
i
√

3

1

6
3

√
(−404 + 12i

√
687)− 32

3 3

√
(−404 + 12i

√
687)

 . (79b)

These give the same eigenvalues of the operator9(1)(z) and its eigenvectors which are
combined by:

|ϕ(1)1 〉 =
1√
3
(|1〉 + |2〉 + |3〉) (80a)

|ϕ(1)2 〉 =
1√
2
(−|1〉 + |2〉) (80b)

|ϕ(1)3 〉 =
1√
2
(−|1〉 + |3〉). (80c)

The recursive formula of the eigenvalues between sublattice 1, and sublattice 2 for the
nth-order and(n− 1)th-order lattice can be inferred by induction using equation (35):

ε′ = ε ε
2 + ε − 4

2− ε . (81)

Then, from equation (81), the recursive formula of the eigenvalues between thenth-order and
(n− 1)th-order lattices is given by

ε(n−1) = 1

6
3

√
(252ε(n) − 152 + 12

√
(12(ε(n))3 + 285(ε(n))2 + 144ε(n) − 816))

−6
1
3ε
(n) − 13

9

3

√
(252ε(n) − 152 + 12

√
(12(ε(n))3 + 285(ε(n))2 + 144ε(n) − 816))

− 1

3

(82)

where−4< ε(n) < 4, and the diagonal elements and off-diagonal elements of the matrix9
(1)
M

are

α′ = 2εβ

(ε + 2)(ε − 1)
(83a)

β ′ = (2− ε)β
(ε + 2)(ε − 1)

(83b)
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andε is defined by

ε′ ≡ Z − α′
β ′

. (83c)

Furthermore, in terms of equation (39), we have the recursive formula of eigenvectors between
sublattice 1 and sublattice 2 given by:

ϕ
(2)
j =

1

(ε + 2)(ε − 1)

3∑
j ′,k=1

−(ZI −H(22))−1
jj ′ (H

(21))j ′kϕ
(1)
k (84)

which provides the recursive formula fornth-order and(n− 1)th-order lattices:

ϕ
(n)
k =

1

(ε + 2)(ε − 1)

3∑
j=1

−[ε − (ε + 2)δkj ]ϕ
(n−1)
j . (85)

From the recursive formula of the spectrum (i.e. equation (81)), we can see that the zero-
permitted energy bandI0 can be obtained by

−46 ε0
ε2

0 + ε0 − 4

2− ε0
6 4 (86)

I0: a0 6 ε0 6 b0 ε0 6= 2 (87)

where

a0 ≡ −1

3
3

√
(145 + 30

√
6)− 25

3 3

√
(145 + 30

√
6)
− 1

3
(88a)

b0 ≡ 1

3
3

√
(107 + 6

√
318) +

1

3 3

√
(107 + 6

√
318)

− 1

3
. (88b)

Repeating the same calculation we can findI1, I2, and so forth. The tendency ofak, bk is that
they are restricted to the interval [a0, b0] and move closer to each other with increasingk, until
arriving at the fixed points:ak = −1−√7, bk = −1 +

√
7. Therefore, the permitted energy

band of the infinite Sierpinski gasket is [−1−√7,−1 +
√

7]. But this is not always the case.
For example, if we assume that the recursive formula of the spectrum is given by

ε′ = −ε(ε + 3) (89)

corresponding to the two opposite Sierpinski gaskets connected together with a periodic
boundary condition (see figure 2) [18], we have the forbidden energy bands:

I0: ε0 > 1, ε0 < −4

I1:−3 +
√

5

2
< ε1 <

3−√5

2

I2:− 3
2 − 1

2

√
(15 + 2

√
5) < ε < − 3

2 − 1
2

√
(15− 2

√
5)

− 3
2 + 1

2

√
(15− 2

√
5) < ε < − 3

2 + 1
2

√
(15 + 2

√
5)

. . . . (90)

Continuing this process we can find thatIk will cover the interval [−4, 1], for k → ∞ [18].
The permitted values of energy form a Cantor set with zero measure, which is different from
the previous case. Therefore, choosing suitable boundary conditions is crucial for designing a
fractal network that reflects expected properties.
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Figure 2. First-order ‘double-opposite’ Sierpinski gasket lattice.

7. Conclusions

We have presented a general formulation to deal with the spectral decomposition of the
Hamiltonian operator for different sorts of confinement fractal network by combining
subdynamics and reduced sublattice approaches. We connected the collision operator or the
intermediate operator with the so-called effective Hamiltonian and have pointed out that the
main method to solve the eigenvalue problem for the original Hamiltonian operator is to
solve for the eigenvalues of the collision operator or its matrix representation by reducing one
sublattice. Once we have solved the eigenvalue problem of the collision operator for such a first-
order lattice, we can use self-similarity of the system to deduce the recursive formulae of the
eigenvalues and eigenvectors of the collision operator for an arbitrary-order lattice. Finally,
we can obtain the spectral decomposition of the original Hamiltonian operator through the
intertwining relation between the original Hamiltonian operator and the intermediate operator.

As a demonstration of our approach, we calculated the eigenvalues and eigenvectors of
the Hamiltonian operator for the Sierpinski gaskets based on our formulation, which shows
that the formulation is useful and powerful for solving the eigenvalue problem for a QFN.
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